
Subscriber access provided by American Chemical Society

Journal of Combinatorial Chemistry is published by the American Chemical Society.
1155 Sixteenth Street N.W., Washington, DC 20036

Article

Efficient Split Synthesis for Targeted Libraries
Barry Cohen, and Steven Skiena

J. Comb. Chem., 2000, 2 (1), 10-18• DOI: 10.1021/cc990028a • Publication Date (Web): 09 December 1999

Downloaded from http://pubs.acs.org on March 20, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/cc990028a

Articles

Efficient Split Synthesis for Targeted Libraries

Barry Cohen and Steven Skiena*

Department of Computer Science, State UniVersity of New York at Stony Brook,
Stony Brook, New York 11794-4400

ReceiVed June 3, 1999

We propose a new approach for fabricating more sophisticated combinatorial chemistry libraries via split
synthesis and evaluate its potential through extensive simulation. Our algorithmically intensive method
promises to reduce the time and materials costs of synthesizing libraries which are (1) too large to synthesize
economically by sequential or parallel synthesis, (2) too long or irregular for conventional split synthesis
generation techniques, and (3) not used in sufficient quantity to justify the setup costs of array makers. It
also encourages the design of more focused and interesting libraries than are typically constructed using
split synthesis. Our algorithms automate the design of efficient synthesis procedures for motif-based libraries
which are too complex to design by hand. Our software allows the user to select the most desirable tradeoff
between minimizing the number of steps in the synthesis process and containing the combinatorial explosion
of the number of compounds synthesized.

1. Introduction

The foundation of combinatorial chemistry is the system-
atic synthesis and screening of large libraries of small
molecules. In the standard one-bead, one-compound ap-
proach1 to combinatorial chemistry, a large number of distinct
small molecules are fabricated on resin beads. These beads
are reacted against a target to establish which beads display
affinities suggesting biologically active agents. The com-
pound associated with a positively reacting bead can then
be identified via sequencing or indirect coding methods.

The adjective “combinatorial” in “combinatorial chemis-
try” refers to the large number of distinct molecules which
may be synthesized by split and combine (split synthesis)
techniques. Unfortunately, the combinatorial explosion en-
sures that this number quickly exceeds the number of
molecules (on the order of 106 to 107) which can simulta-
neously be assayed by high-throughput screening. For
example, full libraries of alll-peptides cannot be assayed
for l g 6, since there are 20l distinct molecules containingl
amino acid residues.

A primary combinatorial constraint on library size is the
number of resin beads which can be reasonably employed
in the synthesis procedure. While synthesis procedures for
more compounds than beads (such as all 205) 3 200 000
pentapeptides) can be performed, clearly most of these
compounds will not actually be constructed. Indeed, after
accounting for the beads which are wasted by constructing
duplicates of some compounds, we would expect to synthe-

size a random subset of the target library. Even if 3 200 000
beads are employed, the expected yield is only (1- (1 -
(1/205))3200000)) 63% of the target library. The size of the
sample required to achieve a desired degree of confidence
that the error is held within a specified limit is examined in
ref 2.

In response to such constraints, techniques for constructing
representatives for all of a simple set of motifs have been
developed using random synthesis steps.1 However, the
sophistication and hence effectiveness of such libraries is
limited by the difficulty of designing cost-effective synthesis
strategies.

Hence the challenge remains to design cost-effective
synthesis methods for complex motifs.

In this paper, we propose a new algorithmicly intensive
optimized split synthesistechnology for fabricating combi-
natorial chemistry libraries and evaluate its potential through
extensive simulation. We believe our methods hold promise
in synthesizing libraries which are (1) too large to reasonably
employ sequential or parallel synthesizers, (2) too long or
irregular for conventional split synthesis generation tech-
niques,3,4 and (3) not used in production quantities, thus
making array-based synthesis techniques5 economically unat-
tractive.

Our techniques enable an experimenter to specify a
selective library of compounds with desirable characteristics.
The aim may be a library with maximum diversity, or
substantial similarity to promising leads, or some combina-
tion of these and other criteria. Our algorithms produce an
efficient procedure for the synthesis of an arbitrary target
library, along with a limited number of related compounds.

* To whom correspondence should be addressed. E-mail: skiena@cs.
sunysb.edu.

10 J. Comb. Chem.2000,2, 10-18

10.1021/cc990028a CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/09/1999

These additional compounds may themselves provide a
useful sample or generalization of the space being explored.
The experimenter can specify an upper limit on how many
such related compounds are acceptable.

The following scenarios illustrate advantages of the
libraries we propose.

(i) Increased Specificity.Suppose that an experimenter
has identified (based on either preliminary screening or
theoretical grounds) a particularly interesting set of 500
hexapeptides which follow no simple motif. For example,
such a library might be the set of all subsequences of length
six of a particular 500-peptide protein. The standard split
synthesis protocol to construct all 206) 64 000 000 possible
hexapeptides entails 20× 6) 120 base-extension or “grow”
steps. Such a protocol performed on an initial set of
1 000 000 beads could be expected to synthesize only 1.5%
or roughly 8 of the 500 target compounds. Instead, our
algorithms would design a synthesis procedure which, with
high probability, producesall 500 compounds in the target
library, together with 20 000 related compounds. The cost
of achieving this is a minor increase in the number of base-
extension steps, from 120 to 324. Parallel synthesis, by
comparison, requires 3000 grow steps to produce just the
500 compounds.

(ii) Increased Generality. After on-bead screening of a
large combinatorial library, H. Peter Nestler of Cold Spring
Harbor Laboratory identified a set of 35 branched hexapep-
tides binding to the carboxy-terminus of the H-Ras protein.6

To identify more active compounds, it is appropriate to
construct a more focused library based on these preliminary
results.

This set of 35 hexapeptides (N35) could be synthesized
using 52 base-extension steps using classical split synthesis
techniques, yielding a library of 151 200 compounds. A
determined approach to building exactly the 35 hexapeptides
would require 35× 6) 210 steps. Instead, our algorithms
designed a synthesis using 56 base-extension steps, which
yielded the target set among only 594 compounds. Such
parsimony encouraged us to specify a larger, carefully
designed target library of all hexapeptides which differ from
one of the 35 compounds in one position, and all possible
substitutions of amino acids with similar properties at a
maximum of two positions. Our algorithm designed a
synthesis procedure yielding all 2138 of these compounds
(and 241 636 other hexapeptides) in only 100 base-extension
steps.

(iii) Reduced Materials and Screening Costs.As il-
lustrated in these two scenarios, our algorithms provide a
synthesis technique which, in return for a modest increase
in the synthesis complexity compared to classical split
synthesis, drastically reduces the number of compounds
which must be screened and also reduces the quantity of
materials consumed.

1.1. Split Synthesis

Split synthesis, developed independently by Furka3 and
Lam,4 is the method of choice to build libraries for
combinatorial chemistry. The basis of this technology is that
molecules can be grown with one end tethered to a resin

bead, while the other end is extended one residue at time in
parallel across a set of beads.

Library construction proceeds through an interleaved
sequence of divide, grow, and combine operations. A set of
beads can bediVidedor partitioned into different chambers,
and all the molecules on the beads in a particular chamber
can begrownor extended by the same set of residues. After
this reaction, the sets of beads can becombinedor mixed
together so they can be grown within the same chamber.
Once combined, two sets of beads cannot be separated again,
although the bead mixture can be divided at will.

It is straightforward to use split synthesis to fabricate a
complete library of, for example, all 20l l-peptides (over the
20 amino acids) or 4l oligonucleotides (over the bases A, C,
G, and T): partition the initial beads into 4 or 20 chambers,
grow each by a different residue, combine all the beads, and
repeat for a total ofl iterations.

Much more complicated is fabricating beads for each
instance of a class of possible patterns ormotifs. A typical
simple pattern of interest might be alll-peptides with certain
critical residues in fixed positions.

For slightly more complex motifs, an efficient synthesis
schedule is difficult or impossible to design by hand. We
illustrate this with a small example. Consider the target
library consisting of the 10 oligonucleotides{AATT, AGGA,
ATTT, GAAT, GAGG, GTCC, TATT, TGGA, TTAA,
TTGT}. Figure 1 illustrates the straightforward split synthesis
protocol for its construction, which requires 14 base-
extension steps and yields 3× 3 × 4 × 4) 144 compounds.
Figure 2 illustrates the parallel protocol for its construction,
requiring 40 base-extension steps, but which yields exactly
the 10 target compounds. Figure 3 illustrates an optimized
procedure produced by our algorithm which constructs
exactly the target library using only 18 base-extension steps.

Figure 1. Classic split synthesis procedure synthesizing the 10-
string library AATT, AGGA, ATTT, GAAT, GAGG, GTCC,
TATT, TGGA, TTAA, and TTGT. It has 14 grow steps and
synthesizes 144 compounds.

Efficient Split Synthesis for Targeted Libraries Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 111

In this paper, we present techniques for constructing
efficient split synthesis protocols which fabricate a desired
target library. We seek to minimize the number of base-
extension orgrow operations performed over the course of
the synthesis, since these most accurately reflect the cost
and complexity of the protocol. Note, however, that we can
construct a superset of the specified library if it will simplify
the synthesis, provided the total number of compounds
synthesized does not grow too large. Thus optimal protocol
design involves making the right tradeoff between these two
criteria.

1.2. Organization

Our paper is organized as follows. In Section 2 we present
our model for split synthesis library design and discuss our
system architecture and associated implementation issues.
Experimental results are reported in Section 3. Section 4
presents our conclusions concerning the sizes and types of
libraries which our techniques hold promise to build, as well

as open problems. The Appendix presents algorithmic details
on our two distinct and complementary computational
approaches to library construction which, although necessary
for anyone building a program to optimize synthesis, may
distract the reader from our main pointsthe new library
design possibilities which our techniques provide.

Our efforts to improve split synthesis library techniques
are a natural follow-up to our previous work with a related
technology: constructing dense oligonucleotide arrays on the
Southern Array Maker apparatus for interactive sequencing
by hybridization, more fully described in refs 7 and 8.

2. Modeling Split Synthesis

We seek to develop and implement algorithms which take
as input a set of desired compounds, such as peptides or
oligonucleotides, and output an efficient split synthesis
schedule of reactions to fabricate them.

Split synthesis can be modeled by a directed acyclic graph
(dag)G. Figure 1 is an example.G consists ofnodesscircles
or trianglessandedges, i.e., connecting lines between nodes.
Each circular node represents a grow step on a particular
subset of beads. The node is labeled with the unit which is
appended by the grow operation. A combine step is
represented by an inverted triangle, and a divide step is
represented by a right-side-up triangle.

The topmost node is thesourceof G; it represents the
pristine set of resin beads. Every path from the source along
the edges represents a possible trajectory of a bead in the
synthesis process. Therefore, the set of labels on a path
represents a particular compound. The set of all paths from
the source to nodeVi corresponds to the set of commingled
beads atVi.

Of the three laboratory operationssgrow, combine, and
dividesthe grow operation is the most time-consuming.
Therefore, to optimize the design of a synthesis procedure,
we seek to minimize the number of grows.

Our algorithms start by building a simple directed acyclic
graphG which constructs all compounds of the desired target
library and refines it by performing a series of local
operations on nodes and edges, each of which brings us to
a more efficient synthesis procedure, while ensuring that all
desired paths remain.

We have shown9 that finding a dag with a minimum
number of nodes which synthesizes a specified target library
is NP-complete.10 This means that it is impractical to compute
the exact optimalsolution for nontrivial inputs. For this
reason, we have developed two heuristic approaches to
optimization: bottom-upandtop-down, which differ in how
the initial dag is constructed and which local operations are
employed. In Section 3, we provide the results of simulations
to help determine which of these heuristics is better.

We have implemented our algorithms in C++, as part of
a system (Figure 4) which consists of the following
components:

(i) The optimizeraccepts a target set of compounds over
an arbitrary alphabet. A typical alphabet might range from
size 4 (nucleotides) to 20 (amino acids). The size of the input,
i.e., the number of input compounds times their length, is
limited by available memory. One million bases is feasible

Figure 2. Parallel procedure synthesizing the same 10-string library
as Figure 1. It has 40 grow steps and synthesizes 10 compounds.

Figure 3. Optimized procedure synthesizing the same 10-string
library as Figure 1. It has 18 grow steps and synthesizes 10
compounds.

12 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 1 Cohen and Skiena

on a machine with 384 megabytes of memory. Our optimizer
also takes as input an upper bound on the total number of
compounds that is desirable to synthesize.

The optimizer outputs an abstract representation of the
synthesis process in the form of a dag, various statistics on
the dag, and also a dot file11 which is suitable for displaying
pictures of small dags.

(ii) The schedulertakes a dag file as input as well as taking
various parameters of the laboratory setting. Most important
is the number of grow operations which can be performed
in parallel. The scheduler outputs a detailed specification of
the steps of the laboratory synthesis procedure.

(iii) The simulator emulates the specified laboratory
procedure and outputs the total set of compounds it produces.

3. Experimental Results

To establish the range of input sizes over which our
techniques are practical and to compare the performance of
our two heuristics, we performed extensive experiments on
the following data sets.

(i) Experiments were performed on allk-mers of the 5243-
nucleotide viral DNA sequence SIV (Simian immune
deficiency) fork) 10, 12, 14, 16, 18, and 20. For example,
there are a maximum of 5234 possible 10-mer subsequences,
beginning at positions 1, 2, ... 5234. The actual number is
lower due to duplicates. This data set is intended to be
representative of libraries designed to combat a specific target
organism.

(ii) Experiments were also performed on the language RE,
containing 7776 10-mers formed by all combinations ofa,
b, andc in positions 1, 3, 5, 7, and 9, anda andb in positions
2, 4, 6, 8, and 10. This is the language of the regular
expression ((a + b + c)(a + b))5. This data set represents
libraries designed around highly structured motifs.

(iii) The data sets include the languages REMINUS and
REPLUS, created by deleting or adding, respectively, 256
random elements to RE. These data sets are intended to
represent minor variations of highly structured libraries.

(iv) Experiments were performed on allk-peptides of the
500-peptide protein FTF-HUMAN and the 1000-peptide
protein MYSH-CHICK fork) 5, 6, 7, 8, 9, and 10. These
data sets evaluate our techniques for the 20-character amino
acid alphabet associated with proteins.

(iv) Experiments were performed on the languages RND-
10, RND-12, RND-14, RND-16, RND-18, and RND-20, each
consisting of 256 randomly generated words of the prescribed
length over the alphabet{A,C,G,T}. These data sets evaluate
our techniques on smaller libraries than presented above.

Our results for synthesizing these 21 libraries are given
in Tables 1-5 and Figures 5-9. The following is a brief
key to reading the tables. The first column, “input”, gives
the name of the target library. In library names with numeric

parts, the numeric quantity indicates the length of the
compounds in the library. For example “SIV-10” denotes
the set of all subsequences formed by 10 consecutive
nucleotides in SIV.

The second column in each table denotes the number of
distinct compounds (oligonucleotides or polypeptides) in each
target library. The third column, “base count”, is the total
number of bases (e.g., nucleotides or peptides) in the target
library. This is the target library size times the length of each
compound. For example, Table 2 reports that there are 991
distinct polypeptides in MYSH-10, each 10 bases long, for

Figure 4. System architecture: accepts set of target strings and
outputs an optimized laboratory procedure for synthesizing a
superset of the input.

Table 1. Optimization of SIVk-mersa

input
oligo
count

base
count

bottom-up
optimization

top-down
optimization

SIV-10 5 107 51 070 968 634
SIV-12 5 155 61 860 2 480 2 795
SIV-14 5 163 72 282 5 121 7 020
SIV-16 5 165 82 640 8 691 9 884
SIV-18 5 167 93 006 12 292 13 601
SIV-20 5 169 103 380 16 890 18 381

a Number of compounds is 100 000.

Table 2. Optimization of MYSH-CHICKa

input
peptide
count

base
count

bottom-up
optimization

top-down
optimization

MYSH-05 996 4 980 503 629
MYSH-06 995 5 970 906 1 060
MYSH-07 994 6 958 1 411 1 531
MYSH-08 993 7 944 1 918 2 090
MYSH-09 992 8 928 2 531 2 639
MYSH-10 991 9 910 3 180 3 190

a Number of compounds is 20 000.

Table 3. Optimization of Protein FTF-HUMANa

input
peptide
count

base
count

bottom-up
optimization

top-down
optimization

FTF-05 496 2 480 324 361
FTF-06 495 2 970 515 688
FTF-07 494 3 458 824 965
FTF-08 493 3 944 1 108 1 283
FTF-09 492 4 428 1 426 1 597
FTF-10 491 4 910 1 748 1 915

a Number of compounds is 20 000.

Table 4. Optimization of RE, REPLUS, and REMINUS

bottom-up
optimization

top-down
optimization

input
string
count

base
count

final
nodes

strings
added

final
nodes

strings
added

RE 7 776 77 760 25 0 25 0
REMINUS 7 520 75 200 99 234 25 0
REPLUS 8 032 80 320 404 5 505 524 1 703

Table 5. Synthesis of Random Strings over{A, C, G, T}a

input
string
count

base
count

bottom-up
optimization

top-down
optimization

RND-10 256 2 560 353 234
RND-12 256 3 072 530 430
RND-14 256 3 584 753 602
RND-16 256 4 096 998 808
RND-18 256 4 608 1 243 1 082
RND-20 256 5 120 1 543 1 578

a Number of compounds is 50 000.

Efficient Split Synthesis for Targeted Libraries Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 113

a total of 9910 bases. Note that most of these libraries are
infeasible to fully construct using classical split synthesis
methods, for the combinatorial reasons outlined in the
introductory section. However, these libraries may be
constructed by parallel synthesis (see Figure 2), which
requires a number of grow steps equal to the total number
of bases in the input. Hence the “base count” provides a
baseline for evaluating the efficiency of our synthesis.

We designed synthesis procedures for each target library
using both our “bottom-up” and “top-down” algorithms. The
fourth and fifth columns of Tables 1-3 present the number
of grow steps in the corresponding procedures, where the
upper limit on the number of compounds is specified in the
table caption.

Figures 5-9 present, in graphical form, the computed
tradeoffs between the number of grow steps and the number
of compounds synthesized for each family of target libraries.
For example, Figure 5a (the “Bottom Up Optimization of
SIV Substrings”) contains six curves representing (beginning
from the top) the results achieved by the “bottom-up”
algorithm on target libraries SIV-20, SIV-18, SIV-16, SIV-
14, SIV-12, and SIV-10. Eachpointon each curve represents
a possible synthesis for the given library. They-coordinate
of a given point denotes the number of base-extensions (grow
nodes) the synthesis entails, and thex-coordinate is the
number of compounds (strings) it produces. Thus the
experimenter may choose a desired parameter value along

either axis and then can find the optimal synthesis which is
achieved for that value for the given target library. For
example, the appropriate point on the top curve of Figure
5a implies that the synthesis for SIV-20 involving 15 000
grow steps created a total of 105.2 ≈ 158 000 compounds.

Our primary observations for each of the target libraries
are as follows:

(i) SIV Target Libraries. Table 1 and Figure 5 present
the results for optimization of the SIV target libraries.
Columns 4 and 5 in Table 1 give the number of nodes for
the bottom-up and top-down methods when 100 000 total
compounds are permitted. The top-down method reduces the
number of grow steps for SIV-10 to 634, a reduction in work
by a factor of 80.6 compared to the parallel construction.

(ii) MYSH-CHICK Target Libraries. Table 2 and Figure
6 present the results for substrings of the 1000-peptide protein
MYSH-CHICK. The optimized procedure reduces the num-
ber of grow steps (compared to the parallel synthesis) by a
factor 7.9, while keeping the number of extra compounds
generated at under 20 000.

(iii) FTF-HUMAN Target Libraries. Table 3 and Figure
7 present similar results for the smaller 500-peptide protein
FTF-HUMAN. Grow steps are reduced by a factor of 7.7
over parallel synthesis for FTF-05.

These protein results are quite encouraging, showing that
interesting protein libraries can be efficiently synthesized in
a modest laboratory using our methods. For comparison, note

Figure 5. Bottom-up and top-down synthesis of allk-mers of the
virus SIV (k) 20, 18, 16, 14, 12, and 10).

Figure 6. Bottom-up and top-down synthesis of allk-peptides of
MYSH-CHICK (k) 10, 9, 8, 7, 6, and 5).

14 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 1 Cohen and Skiena

that it already strains the capacity of conventional split
synthesis technology to construct the complete set of 205)
3 200 000 pentapeptides.

(iv) Motif Target Libraries. The motif target libraries
include the set of compounds RE of all 7776 possible
compounds of length 10 when basesa, b, andc are permitted
in positions 1, 3, 5, 7, and 9 and when only basesa andb
are permitted in positions 2, 4, 6, 8, and 10. This set can be
easily synthesized using 25 grow steps; both of our optimiza-
tion techniques arrive at this result. Figure 8 and Table 4
present our results on RE and two related libraries.

The library REMINUS, created by deleting 256 random
elements from RE, can be efficiently synthesized using 25
steps by adding back the 256 deleted elements. The top-
down approach initially constructs exactly this optimal
experiment; the bottom-up method constructs REMINUS
with 99 nodes, while adding fewer than 256 elements. The
library REPLUS, formed by adding 256 random compounds
to RE, is more difficult; the trivial construction of the 256
added elements alone requires 2560 nodes. Our bottom-up
approach constructs REPLUS with only 404 nodes when the
maximum number of compounds is 15 000; the split ap-
proach employs 456 nodes.

(v) RND Target Libraries. Finally, we consider the
construction of the family of smaller random libraries. Figure
9 and Table 5 present the results, keeping the number of
compounds below 50 000 in every case. Parallel synthesis

requires 10.9 times as many grow steps as our synthesis for
the case of RND-10.

All the data presented here were generated on a 300 MHz
PC with 192 MB of memory. All results presented here for
the bottom-up technique were computed in under 15 min.
The top-down approach is more time-consuming, but takes
under 8 h oneach run. We believe that the run times for the
second method could be improved significantly were it
important to do so.

4. Conclusions

These results indicate that our combinatorial approach to
split synthesis can achieve significant improvements across
a range of input sizes and on varied alphabets. Our methods
may be effectively applied both to DNA/RNA synthesis with
an alphabet of four and to protein synthesis with an alphabet
of 20.

The efficiencies achieved are greatest in synthesizing
libraries with strong regularities, but which are not simple
enough to be designed by hand. This suggests our methods
may best be applied when the desired library is a set of
variations on one or more motifs. The “excess” compounds
produced, which we have discussed primarily as an inef-
ficiency, are themselves in fact potentially interesting varia-
tions on the target compounds, and hence potentially valuable
for drug discovery.

Figure 7. Bottom-up and top-down synthesis of allk-peptides of
FTF-HUMAN (k) 10, 9, 8, 7, 6, and 5).

Figure 8. Synthesis of the language of 7776 strings defined by
((a + b + c)(a + b))5 with 256 randomly generated strings added
(left) and 256 randomly selected strings deleted (right).

Efficient Split Synthesis for Targeted Libraries Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 115

It is interesting to note that the top-down and bottom-up
heuristics, which take opposite starting points and use
dissimilar methods, achieve closely comparable results on
varied inputs in the range we believe most interesting. The
top-down approach, which in this range seems slightly
inferior to the bottom-up heuristic, offers more promise in
applications where the penalty for constructing extra com-
pounds is less than we assume here. In the simple cases of
regular expressions, where we can bound the optimum
solution, both our methods approach these bounds. Our
techniques extend the range of combinatorial libraries which
can be synthesized by hand by a factor of perhaps 3 to 10.
We can also produce efficient schedules for larger libraries
exceeding 10 000 bases, for which an automated synthesis
procedure may be necessary to implement the resulting
production schedules.

Several interesting algorithmic open problems remain:

(i) Whenever a full set of specified molecules cannot be
fabricated within a given resource constraint, we seek to
synthesize as large a subset as possible. How best can we
exploit this freedom?

(ii) The split synthesis protocol provides the freedom to
grow one residue using a subset of more than one amino
acid. For example, extending the beads in a chamber using
equal amounts of two different reagents will extend half of
the molecules by one residue and half by the other. Since

each bead contains a large number of molecules, we get equal
numbers of copies per bead. How best can we exploit this
freedom?

(iii) Similarly, the protocol provides the freedom to
construct longer molecules on beads, each of which contains
as submolecules representatives of more than one motif. This
significantly reduces the number of beads needed, at the cost
of more complex synthesis design. How best can we exploit
this freedom?

We would be very interested in helping laboratory groups
design custom synthesis procedures for their libraries.

Acknowledgment. We thank Jonathan Montague and
Peter Nestler of Cold Spring Harbor Laboratory for useful
discussions concerning split synthesis and combinatorial
chemistry.

Algorithm Appendix

Here we sketch our two distinct but complementary
approaches to experimental design, each of which yields an
efficient, though not necessarily optimal, solution. See ref 9
for greater detail on our algorithms. In each method, we
construct an initial dagG, containing all the desired strings.
Then we apply a greedy heuristic to identify a sequence of
local operations on nodes and edges, each of which brings
us closer to the minimal solution, while ensuring that all
desired paths remain. Our two approaches,bottom-upand
top-down, differ in how the initial dag is constructed and
which local operations are employed.

A.1. Bottom-Up Experimental Design.In this section,
we consider a bottom-up approach to optimizing split
synthesis. It starts with an initial dag which realizes exactly
the target set of strings and then performs local operations
that reduce the number of nodes at the cost of possibly adding
strings.

A.1.1. Initial Dag Construction. The initial dag for our
bottom-up strategy is the conjunction of two rooted trees.
Figure 10 illustrates the initial dag construction of the same
10-compound library as in Figures 1-3. One tree, rooted at
the source, is built from the prefixes ofS; and the other
(inverted) tree, rooted at the sink, is built from the suffixes
of S. We divide each input string of lengthk into a prefix of

Figure 9. Bottom-up and top-down synthesis of 256 random
k-strings over{A, C, G, T} (k) 20, 18, 16, 14, 12, and 10).

Figure 10. Initial bottom-up construction of a dag for the 10-
string library AATT, AGGA, ATTT, GAAT, GAGG, GTCC,
TATT, TGGA, TTAA, and TTGT. It has 14 grow steps and
synthesizes 51 compounds.

16 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 1 Cohen and Skiena

length k/2 and a suffix of lengthk/2. The prefixes are
represented by a conventional prefix tree. Level 0 of the tree
consists of the source, and on leveli at mostRi nodes, one
for each distinct prefix of lengthi.

The suffixes are similarly represented by an inverted tree.
The sink will be at levelk + 1, and there is one leaf for
each distinct suffix at levelk/2. In the suffix tree we reverse
the direction of the edges, so that edges point away from
the leaves toward the sink.

For each input strings∈ Swe create an edge between the
node corresponding to the last letter of its prefix and the
node corresponding to the first letter of its suffix (dashed
lines in Figure 10). The result is a dag with a single source
and a single sink. Moreover, for each input string there is a
unique path through the dag and every path corresponds to
an input string.

We can now perform two classes of optimizations.Fixed
library optimizations alter the dag, but not the set of labeled
paths through it.Enhanced libraryoptimizations alter the
dag, preserving all input paths while adding and/or deleting
other paths.

A.1.2. Fixed Library Optimizations. Note that if two
nodes,x andy, have the same label and an identical set of
parents, they can be merged without altering the set of labeled
paths through the dag. Thispairwise reductioncan also be
applied to any two nodes with a common set of children,
since there is a symmetry between parents and children.

In our experiments, pairwise reductions account for
between 2% and 33% of the total reductions achieved over
the initial dag, depending on the input.

A second fixed library optimization isrefinement. Refine-
ment is the deletion of an edge from the dag, possibly adding
other edges, in such a way that the total number of paths
through the dag is reduced.

A.1.3. The Path Merger Technique.Our strategy for
reducing the number of nodes in the dagG is to identify
pairs of paths inG which may be merged, eliminating
redundant nodes.

We call a path inG simpleif every node after its head
node has only one parent and every node before its tail node
has only one child. Each node inG is a simple path of length
1.

Let S andT be two identically labeled simple paths inG
of length L occurring the same distance from the source.
Figure 11a shows an example in which pathS consists of
nodes (Vi+1,1, Vi+2,1, Vi+3,1) and pathT consists of (Vi+1,2, Vi+2,2,
Vi+3,2).

We may mergeS and T by merging the corresponding
nodes (Figure 11b). Path merger preserves all existing labeled
paths throughG and reduces the number of nodes inG by
the length of the paths (the benefit) while possibly adding
new paths throughG (the cost). In Figure 11, three nodes
are deleted and two paths are added.

The merger of two nodes is a special case of path merger
in which the paths are of length 1.

In our implementation, we apply path merging in strictly
greedy fashion. All combinations of cost and benefit are
ranked, and the cheapest are performed first. Mergers are

performed until the cumulative cost in strings equals the
maximum price we are willing to pay.

After optimizingG using this merge strategy, refinement
typically reduces the number of paths throughG by an
additional 15-25%.

A.2. Top-Down Experimental Design.Our top-down
technique for split synthesis design is similar to the straight-
forward split synthesis technique; it starts with an initial dag

Figure 11. (a) Simple paths consisting of nodes (Vi+1,1, Vi+2,1, Vi+3,1)
and (Vi+1,2, Vi+2,2, Vi+3,2) are candidates for merging. (b) Dag after
the simple paths have been merged.

Figure 12. Initial construction of a top-down dag. There is at most
one node per base per level. This dag constructs all trimers over
the alphabeta, b, c.

Figure 13. In certain cases, no split of a single node decreases
the number of paths through a dag. Continuous lines represent
compounds in the target library. A path may be composed of edges
(segments) from multiple lines. Here, any split of the middle node
of (a) (four paths) results in the same (b) or a greater (c) number
of paths (eight paths).

Efficient Split Synthesis for Targeted Libraries Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 117

with the smallest possible number of nodes which realizes
the target library. It differs from classical split synthesis in
that it omits inessential edges. Such an initial construction
(Figure 12) realizes a large fraction (perhaps all) of possible
lengthk strings over the given alphabet. We then perform
local operations to reduce the number of undesired strings
while adding a small number of additional nodes. The
potential advantage of this approach is that our initial dag
comprises at mostkΣ nodes (whereΣ is the size of the
alphabet), so we can afford a large number of splits which
reduce unneeded strings.

We start with either zero or one node of each given label
on each level ofG, depending on whether the given label
appears at that position in the input. On a large input, this
may yield a level-wise complete dag, in which each node is
a neighbor of every node on neighboring levels. Such a
complete dag generatesΣk paths, most of which are likely
to be unnecessary.

Our strategy is to reduce the number of paths throughG
by splitting nodes. To split a nodeV, we replace it by two
child nodes,V′ andV′′, which have the same label asV. We
must construct edges for the child nodes which ensure that
no paths required to construct the target library are elimi-
nated.

Unfortunately, after our initial construction it is often the
case that no node can be split in a way which reduces the
number of paths throughG, as in Figure 13a. Every split
produces the same number of paths (Figure 13b) or a greater
number (Figure 13c). A more powerful technique is required.

This technique ispath splitting. We call a pathforbidden
if it is not necessary for the construction of any string in the
target library. Path splitting is a construction which splits
the internal nodes, that is, all except the first and last nodes,
of any path of length 3 or greater (Figure 14). When|p|)
3, a single node is split. This construction preserves all paths
necessary to synthesize the target library.

The benefit is the number of paths eliminated fromG.
The cost is the number of nodes added, which is|p| - 2.

We apply the path-splitting strategy according to a greedy
criterion. All forbidden paths less than a critical length are
located, their cost/benefit ratio calculated, and the best split
performed. At specified intervals, pairwise reductions are
performed.G is refined at the conclusion of path splitting.

References and Notes
(1) Lebl, M.; Krchnak, V.; Sepetov, N.; Seligmann, B.; Strop, P.; Felder,

S.; Lam, K. One-bead-one-structure combinatorial libraries.Biopoly-
mers (Pept. Sci.)1995, 37, 177-198.

(2) Zhao, P. L.; Zambias, R.; Bolognese, J. A.; Boulton, D.; Chapman,
K. T. Sample size determination in combinatorial chemistry. InProc.
Natl. Acad. Sci. U.S.A.1995, 92, 10212-10216.

(3) Furka, A.; Sebestyen, F.; Asgedom, M.; Dibo, G. General method
for rapid synthesis of multicomponent peptide mixtures.Int. J. Pept.
Protein Res.1991, 37, 487-493.

(4) Lam, K.; Salmon, S.; Hersh, E.; Hruby, V.; Kazmierski, W.; Knapp,
R. A new type of synthetic peptide library for identifying ligand-
binding activity.Nature1991, 354, 82-86.

(5) Fodor, S.; Read, J.; Pirrung, M.; Stryer, L.; Lu, A.; Solas, D. Light-
directed, spatially addressable parallel chemical synthesis.Science
1991, 251, 767-773.

(6) Dong, D. L.; Liu, R.; Sherlock, R.; Wigler, M. H.; Nestler, H. P.
Molecular Forceps from Combinatorial Libraries Prevent the Far-
nesylation of Ras by Binding to Its Carboxy-Terminus.Chem. Biol.
1999, 6 (3), 133-141.

(7) Bradley, R.; Skiena, S. Fabricating arrays of strings. InProceedings
of the First International Conference of Computational Molecular
Biology (RECOMB′97); 1997, pp 57-66.

(8) Margaritis, D.; Skiena, S. Reconstructing strings from substrings in
rounds. InProceedings of the 36th IEEE Symposium Foundations
of Computer Science (FOCS); , 1995, pp 613-620.

(9) Cohen, B.; Skiena, S. Optimizing Combinatorial Library Construction
via Split Synthesis. InProceedings of the Third Annual International
Conference of Computational Molecular Biology (RECOMB′99),
1999, pp 124-133.

(10) Garey, M. R.; Johnson, D. S.Computers and Intractability: A Guide
to the theory of NP-completeness; W. H. Freeman: San Francisco,
1979.

(11) Kousofios, E.; North, S. Drawing graphs with dotsdot user’s manual.
Technical Report, AT&T Bell Laboratories, 1993.

CC990028A

Figure 14. (a) A path is forbidden if no string passes through all
its vertexes. Path (V1,1, V2,1, V3,3) is forbidden. (b) Assumep) (p1,
p2, p3, p4) is forbidden. Construction (c) eliminates all paths through
G containingp as a subpath.

18 Journal of Combinatorial Chemistry, 2000, Vol. 2, No. 1 Cohen and Skiena

